

BATTERY MANAGEMENT SYSTEMS

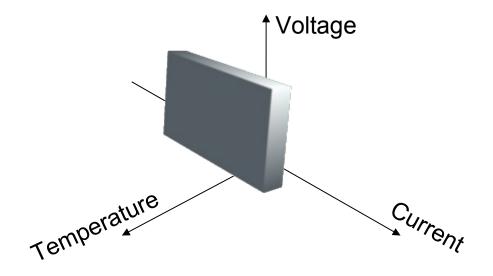
Davide Andrea Elithion

Li-ion cells Safe Operating Area

• Li-ion cells are great...

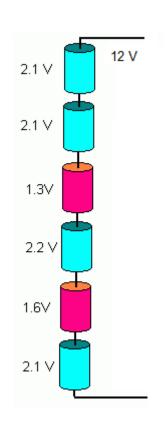
if operated within their SOA

• Else



BMS MAIN FUNCTION: PROTECTION

A BMS keeps <u>EACH</u> cell within its SOA



BATTERY PROTECTION

- Protecting a single cell is hard enough
- Protecting a battery

 (a series string) is harder:
 cell voltages do not divide equally,
 temperatures vary

BMS 2nd FUNCTION: BALANCING

- All cells equally charged = maximum available energy
- Balancing removes charge from fullest cells, to leave room for more charging, so the other cells can catch-up

ANALOG BMS ("protector", "PCM")

Voltage protection

May have:

BUT

Knows not what, where and by how much

DIGITAL BMS: MUCH MORE

- Evaluation of State of Charge ("Fuel Gauge")
- Evaluation of State Of Health
- Knows what, where and by how much
- Reports
- Requests shut down (doesn't include switch)

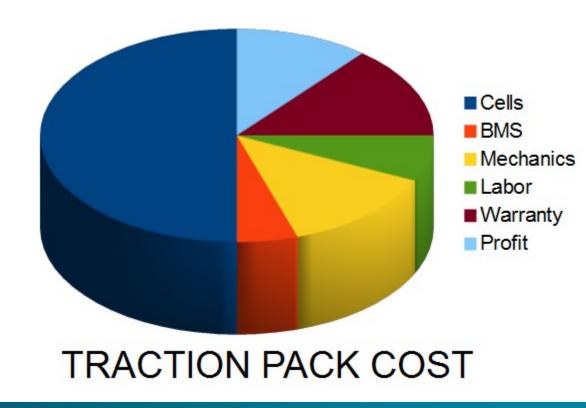
SYSTEM MUST OBEY BMS

BMS can't do a darn thing if nobody's listening

SYSTEM

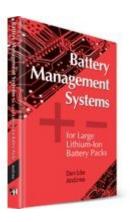
TYPES OF BMS

- Analog vs Digital
- Off-the-shelf vs custom
- Distributed vs non-distributed



BMS COST

- Custom:2 years, \$ 250 K
- Off the shelf: immediate, no NREs, 50 % premium



THANK YOU

Resources:

- Li Ion BMS .com: comparisong tools directories, white papers
- "Battery Management Systems

for Large Lithium-Ion Battery Packs "

