

Li-Ion Myth-Buster

Poking holes into some common beliefs about Li-Ion cells and Li-Ion BMSs.

Davide Andrea Elithion - Electronics for Lithium Ion

EXTRA! EXTRA!

As heard <u>this</u> morning: "With few large format cells, each cell is monitored. With many small format cells, monitoring each cell is impractical."

EXTRA! EXTRA!

The same BMS with work equally well with both formats.

A) Cells B) Batteries C) BMS D) Balancing

Group A: Myths about Li-Ion cells

- Cell capacity myths
- Cell swelling myths

Myth A1: "A cell puts out less charge than you put into it"

Battery Power Conference 2010, 6,

Li-Ion charge efficiency = **100 %**:

Every electron that goes in can come back out

(Though, energy efficiency is < 100 %)

Charge efficiency

1 A in for 1 hour, 1 A out for 1 hour

SOC: 100 %, to 0 %, back to 100 %: charge efficiency is 100 %

Charge voltage is higher than OCV, lower during discharge

Charge power is more than discharge power

Energy doesn't go back down to 0: energy efficiency is < 100 %

Myth A2: "Cell capacity depends on rate of discharge"

Battery Power Conference 2010, 9,

Capacity vs rate

Capacity vs rate

Capacity vs rate

Myth A3: "Cell capacity decreases with number of cycles"

Battery Power Conference 2010, 13,

Capacity vs cycles

Group C: "I don't need a BMS" myths

- Cutoff myth
- Small SOC range myth
- Extra cells myth

C1: "I don't need a BMS my charger has a high voltage limit"

C2: "I don't need a BMS my load has a low voltage cut-off"

No BMS: I use a cutoff

There's no way of knowing the state of individual cells from the pack voltage.

No BMS: I use a cutoff

Top balancing won't help

No BMS: I use a cutoff

Yes: a CCCV will protect a topbalanced pack: when the pack voltage is at the max, all the cell voltages will be equally at the max.

However, when discharging without a BMS, the voltage of the least capacity cell will drop too far and be damaged.

No BMS: I use a cutoff

Bottom balancing won't help

No BMS: I use a cutoff

Yes: a LV cutoff will protect a bottom-balanced pack: when the pack voltage is low, all the cell voltages will be equally low.

However, when charging without a BMS, the voltage of the least capacity cell will go too high.

And that's a fire danger!

No BMS: I mind the SOC

Myth #C3: "I'll won't use the entire SOC range, so I don't need a BMS"

Battery Power Conference 2010, 22,

Nice and easy: no BMS

The assumptions are that:

- 1) The pack SOC is known
- 2) All the cells are at that same SOC

Not so.

Without a BMS, the pack SOC is not known (and even a BMS doesn't always know the SOC)

More cells: no BMS

Myth #C4: "Extra cells are cheaper than a BMS"

Battery Power Conference 2010, 24,

More cells: no BMS

The assumption is that a pack without a BMS will simply slowly degrade. So, instead of buying a \$ 1000 BMS, I'll buy 10 extra cells.

Not so.

A SINGLE overcharge or over-discharge event can kill a cell. And it will keep on happening after you replace that cell.

D: Balancing myths

Group D: Myths about cell balancing

- Balance purpose myths
- Balance point myths

Balancing purpose

D1: "Balancing protects a battery" D2: "Balancing compensates for variations in cell capacity"

Battery Power Conference 2010, 27,

The point of balancing is to maximize battery capacity.

Balancing brings all the cells to the same SOC at <u>ONE</u> point.

The SOC is balanced.

Bottom balancing

Myth D4: "Bottom balancing protects the cells"

Battery Power Conference 2010, 29,

Bottom balancing

electronics for lithium-ion

ťhion

Battery Power Conference 2010, 30,

Bottom balancing

Thank you

"Battery Management Systems for Large Lithium Ion Battery Packs" Davide Andrea

book.LilonBMS.com

elithion.com